CURRENT TREATMENT OF AGCT AND FUTURE PERSPECTIVES

Ulla-Maija Haltia, MD, Helsinki, Finland
• MD, Resident in Obstetrics and Gynecology in Helsinki University Hospital

• PhD student, GCT Research Group Helsinki, University of Helsinki

• No conflicts of interest
AGCT

- Prognosis
 - 5-year survival 90-97% in stage I (*Colombo et al 2007, Bryk et al 2015*)
 22-75% in stage II-IV (*Björkholm et al 1981, Fujimoto et al 2001*)

- 30% relapse
 - median time 4-8 years (*Lee et al 2008, Sun et al 2012, Bryk et al 2015*)
 - mortality to recurrent disease 50% (*Bryk et al, unpublished*)
Treatment of AGCT

• Surgery, primary tumor:
 • Laparotomy (open) or laparoscopic surgery
 • Removal of the uterus, ovaries and fallopian tubes, peritoneal washings, biopsies and omentectomy
 • Lymphadenectomy not recommended as routine procedures, suspicious nodes should be removed
 • Tumor rupture is an adverse prognostic factor
 -> centralization of the treatment to specialized units!
• Fertility-sparing surgery (in stage I (a)): uterus and healthy ovary conserved, biopsies and endometrial sampling should be performed
• Younger age may be associated with relapse
• Long latency to relapse -> No consensus what to do when reaching menopause
Recurrent tumors

- Often multifocal
- Pelvis as the most common site
- Metastasis to distal organs are rare
- Optimal surgery is important
 - Debulking surgery (ESMO guidelines)
 - Even repeated operations (Mangili 2013)
 - Residual tumor is a significant adverse prognostic factor
- Optimal surgery achieved in 71-85 % of the recurrences (Ertas 2014)
Chemotherapy

Malignant Sex Cord-Stromal Tumors

CLINICAL PRESENTATION

Malignant sex cord-stromal tumors

Stage IA/IC: Desires fertility

Stage I Low risk

Fertility-sparing surgery with complete staging

Stage I High risk (eg, ruptured stage IC or poorly differentiated stage I) or Intermediate risk (eg, heterologous elements)

Stage II-IV

Platinum-based chemotherapy (category 2B) or RT for limited disease (category 2B)

Stage II-IV Low risk

Observe (category 2B)

Observe (category 2B) or Consider platinum-based chemotherapy (category 2B)

Stage II-IV High risk

Observe (category 2B) or Consider platinum-based chemotherapy (category 2B)

Observe (category 2B)

Observation

Stage III-IV

Clinical trial or Consider secondary cytoreductive surgery or Recurrence therapy

RECURRENT DISEASE

TREATMENT

RECURRENT THERAPY
Chemotherapy

- ESMO guidelines
 - Recommended as adjuvant in stage Ic/II primary tumor or higher and in recurrent AGCT
 - BEP=Bleomycin, Etoposide, Carboplatin (3-6 cycles)
- other options
 - Etoposide, Cisplatin
 - Cyclophosphamide, Doxorubicin, Cisplatin
 - Paclitaxel, Carboplatin
 - Platinum agent alone
 - PVB (Cisplatin, Vinblastine, Bleomycin)
 - VAC (Vincristine Dactinomycin Cyclophosphamide)
BEP/BEC response rates

<table>
<thead>
<tr>
<th>Patients</th>
<th>Response rates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (2 res, 3 rec)</td>
<td>2 x CR (40%)</td>
<td>Gershenson 1996</td>
</tr>
<tr>
<td></td>
<td>3 x PR (60%)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6 x CR (24%)</td>
<td>Homesley 1999</td>
</tr>
<tr>
<td></td>
<td>4 x PR (16%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 x SD (56%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x PD (4%)</td>
<td></td>
</tr>
<tr>
<td>20 (5 res, 15 rec)</td>
<td>9 x CR (45%)</td>
<td>Pautier 2008</td>
</tr>
<tr>
<td></td>
<td>9 x PR (45%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x SD (5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x PD (5%)</td>
<td></td>
</tr>
<tr>
<td>9 (9 rec)</td>
<td>1 x CR (11%)</td>
<td>Van Meurs 2013</td>
</tr>
<tr>
<td></td>
<td>1 x PR (1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 x SD (78%)</td>
<td></td>
</tr>
</tbody>
</table>
Adjuvant therapy – effect for relapse?

- Park 2012
 - Adjuvant BEP chemotherapy not significantly associated with DFS
 - 6/13 completed 6 cycles of BEP: no recurrence
 - 7 patients received fewer than 6 cycles, 5/7 had recurrences

- Meisel 2015
 - BEP did not improve the recurrence free interval
BEP/BEC adverse effects

- Pulmonary toxicity
 - Bleomycin induced pneumonitis > lung fibrosis
- Skin reactions
- Bone marrow suppression
- Gastrointestinal symptoms

- Cisplatin vs carboplatin
Taxanes

• Brown et al 2005: same efficacy with less toxicity when compared with BEP

• GOG trial ongoing: Paclitaxel and Carboplatin or Bleomycin Sulfate, Etoposide Phosphate, and Cisplatin in Treating Patients With Advanced or Recurrent Sex Cord-Ovarian Stromal Tumors
Targeted treatments

• Bevacizumab
 • Angiogenesis inhibitor
 • AGCTs highly vascularized, VEGF elevated in AGCT
 • Brown 2009: Bevacizumab showed activity: response rate 38%
 • 8 GCTs, 1/8 CR, 2/8 PR, 3/8 disease progression
 • Brown 2015: GOG phase II trial, activity in AGCT (PR 16%), toxicity acceptable

• Adverse effects
 • hypertension
 • proteinuria
 • bowel perforation
Hormonal treatments

• AGCT is a hormone secreting tumor
 • Inhibins, estradiol (E2)

• Drugs
 • Aromatase inhibitors
 • Selective Estrogen Receptor Modifiers (Tamoxifen)
 • Progestins
 • GnRH agonists

• Efficacies : CR 25.8%, PR 45.2%, aromatase inhibitors most efficient (van Meurs 2014)

• Recent studies: CR 4.5%, PR 14%, SD 64%, progression 18% (van Meurs 2015)
Future perspectives

• Targeted treatments
 • Less side effects
 • Biological background

• Mechanisms of hormonal modulation
GCT Research Group Helsinki
AGCT patients and samples

Original Cohorts
Diagnostic Histology: AGCT

- Helsinki 1956-2016 n=245
- Turku/AURIA 1984-2015 n=50
- Amsterdam 1974-2013 n=127

Histological re-evaluation
FOX1L2 402C>G mutation analysis

- FOXL2 verified AGCTs n=315*
- Other/missing n=63/46*

Final cohort 1956-2016 n=315*

Prospective study 2007-> n=110

TMA
- Helsinki 1956-2016 n=198
- Turku 1984-2015 n=50*
- Amsterdam 1974-2013 n=110

- Survival, recurrences, treatment responses
- IHC expression profiles

Fresh tumor samples
- Primary and recurrent n=60

Blood samples
- Primary cell cultures
- Genomic and expression analyses
- Serum and plasma biomarkers

Helsinki
- Pretreatment and follow-up n=900
GCT Research Group Helsinki

- Clinical and translational studies
 - Comprehensive database
 - Primary GCT cell culture model
 - Fresh AGCT samples
 - GCT cell lines
 - Tumor tissue microarrays
 - Serum samples

- 5-10 new AGCTs every year
Serum markers in AGCT

- Diagnostic markers for patients with Ovarian Granulosa Cell Tumors; comparative analysis of CA125, HE4, Inhibin B and AMH

 - CA125 levels usually not elevated in AGCT but no studies on HE4-levels in AGCT
 - Preoperative diagnosis is important
 - Referral of patients to specialized units
 - To find most optimal serum marker/marker combination for AGCT
Conclusion

• HE4 levels are not elevated in AGCT

• Inhibin B is the best marker to differentiate AGCT from both malign and benign ovarian cysts.

• For differentiating AGCT from EOC, Inhibin B alone is sufficient

• For differentiating AGCT from endometriomas, Inhibin B and AMH in combination is most optimal

• In this study, Inhibin B was the best follow-up marker for AGCT
Primary cell cultures of AGCTs

2-10 cm tumor → 0.5% collagenase → filtration → single cells

experiments
Drug sensitivity and resistance testing (DSRT)

- Measures how efficiently different drugs inhibit tumor cells
- Over 300 drugs screened at the same time (approved cancer drugs and novel agents)
- Drugs plated on 384-well plates at five different concentrations (from 1 nM to 10 µM)
- Isolated primary cultured GCT cells added > Incubation for 3 days
DSRT results

- Drug efficacy measured by the amount of viable (ATP-producing) cells
- IC50-value
 - Required dose to kill 50% of the tumor cells
- Drug sensitivity score-value (DSS)
 - Algorithm developed for comparing drug responses between drugs and between patients
Selective drug sensitivity score sDSS

• Differential activity of the drugs in GCT cells in comparison to healthy bone marrow cells

Unpublished data
Conclusions

- AGCT cells are more sensitive to paclitaxel than to bleomycin
- The most efficient compound in reducing cell viability of AGCTs was tyrosine kinase inhibitor dasatinib
- Dasatinib and paclitaxel seem to have synergy effect in AGCT cells when used in combination
- *In vivo* studies are needed
AGCT and hormones

Granulosa cells produce estradiol from androgens (aromatase enzyme active in granulosa cells)

AGCTs “estrogen-dependent” – are they really?
Clinical questions

• Estrogen replacement therapy after AGCT surgery?
 • Bryk 2015: HRT not risk for survival

• Aromatase inhibitors in AGCT, is there a rationale?
AGCT and hormones

- AGCTs secrete estradiol, but what does estradiol do to AGCT?

- Strong GPER intensity at primary diagnosis showed a significantly reduced overall survival (Heublein 2014)

- Does estrogen stimulate AGCT cell growth?
 - 17β-estradiol inhibits spreading of metastatic cells from granulosa cell tumors through a non-genomic mechanism involving GPER1 (Francois 2015)
The role of FSH in AGCT?
Future studies

• Hormonal characterization of AGCT
 • Clinical correlations

• The efficacy of aromatase inhibitors in AGCT
 • Can hormone receptors be used as predictive markers for hormonal treatments (clinical data)
 • Aromatase inhibitors in cell cultures

• AGCT cells and hormonal stimulations
 • Do we have to avoid ERT or not??
Thank you!

GCT Research Group Helsinki

Anniina Färkkilä, MD, PhD
Leila Unkila-Kallio, MD, PhD
Johanna Tapper, MD, PhD
Markku Heikinheimo, MD, PhD
Marjut Pihlajoki, PhD
Noora Nadersson, PhD
Lotta Mäkinen B.M.

Collaborators

FIMM
Bhagwan Yadav
Evgeny Kulesskiy
Jing Tang
Tero Aittokallio
Krister Wennerberg
Marianne Hallamaa, Univ. Of Turku
Antti Perheentupa, Univ. Of Turku
Dave Wilson, University of St Louis, MO, USA

Grant support: Academy of Finland,
Juselius Foundation, HUH Funds, GCT Foundation USA